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L E m R  TO THE EDITOR 

Geometrical properties of singly connected bonds in 
percolation clusters 

Yacov Kantor 
Corporate Research Science Laboratories, Exxon Research and Engineering Company, 
Route 22 East, Annandale NJ 08801, USA 

Received 31 July 1984 

Abstract. Numerical simulation of the two-dimensional bond percolation at the percolation 
threshold on an L x L lattice shows that the radius of gyration of singly connected bonds 
(SCB) scales as L ’ .  This result confirms an assumption used to derive a lower bound on 
the critical exponent of elasticity. A persistent anisotropy in the distribution of SCE is 
found and used to estimate the ratio between the bulk and shear moduli of a random 
percolating system. Local anisotropy in the direction of SCB disappears for large L. 

Recently, various aspects of the geometrical properties of percolation clusters on length 
scales L smaller than the percolation correlation length 6 have received considerable 
attention. The simple ‘nodes and links’ model proposed by Skal and Shklovskii (1974) 
and de Gennes (1976), has been subsequently modified to include the correct scaling 
of various properties. It was noted by Stanley (1977) that for L<< 6 the bonds of the 
infinite cluster can be divided into two groups: singly connected (or cutting, or ‘red’) 
bonds (SCB), such that if one is cut the cluster breaks into two parts, and multiply 
connected (or ‘blue’) bonds. It was found (Coniglio 1981, Pike and Stanley 1981, 
Coniglio 1982) that the number of SCB LI - L””, for 1 << L<< 6. Numerous investigations 
of the geometry of the infinite cluster usually emphasised the various lengths, e.g. the 
scaling of the shortest path between two points (Middlemiss et a1 1980, Pike and 
Stanley 1981, Hong and Stanley 1983a, b, Hermann et a1 1984), as opposed to the 
shapes of various features, since in many problems, such as conductivity or some 
magnetic phenomena, the connectivity and various lengths (but not the shapes) play 
the major role. Recently, several different Hamiltonians have been used (Kantor and 
Webman 1984, Bergman and Kantor 1984, Feng and Sen 1984) to describe the elastic 
properties of random materials. Vector displacements of the lattice sites are the 
variables of these Hamiltonians, and therefore the actual shapes of different paths play 
an important role in the determination of the effective elastic properties. 

In this work I discuss the results of a numerical investigation of several geometrical 
features of SCB. The results are obtained by Monte Carlo simulation of the bond 
percolation problem on a two-dimensional ( 2 ~ )  L X L square lattice at the percolation 
threshold pc = f. The simulations are performed for 2 Q L Q  140, and the dependence 
of the various features of SCB on L is checked. The radius of gyration (RMS distance 
from the centre of mass) of SCB is found to be proportional to L, however there is a 
persistent anisotropy in the distribution of SCB: the distribution is elongated in the 
direction of percolation. An estimate of this elongation provides an indication on the 
universal ratio between the bulk and shear moduli. Local anisotropy in the direction 
of SCB slowly disappears with increasing L. 
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The dependence of an effective elastic constant K,  e.g. bulk modulus or shear 
modulus, on the volume fraction of a solid component p ,  near the percolation threshold 
isgivenby K = K , , ( ~ - P ~ ) ~ - ( - ~ / ~  , where T is the elastic equivalent of the conductivity 
exponent t ,  and v is the correlation length exponent. On the length scales 1 << L<< 6, 
K (  L )  - L-‘/”. The force constant k( L )  of an L x L square (hypercube in d dimensions) 
can be defined as a ratio of a force applied to its boundary to the average displacement 
of that boundary, and it is related to the elastic modulus by K (  L )  = L2-dk( L ) .  If the 
force constant scales as L‘E, then the exponents of the effective elastic modulus and 
of the force constant can be related by 

= ( d  -2  + l E ) v .  ( 1 )  

Kantor and Webman (1984) used an elastic Hamiltonian, which included energy terms 
proportional to the squares of the changes in the angles between adjacent bonds. For 
a single chain that Hamiltonian reduces to a very simple form, which is analytically 
solvable. It can be shown that the force constant of such a chain is 

k - SY’N-’, (2) 

where N is the length of the chain and S ,  is the radius of gyration in the direction 
perpendicular to the applied force. 

This result can be used to obtain bounds on lE (or 7 ) .  If we assume that in the 
actual percolation problem all the multiply connected bonds are infinitely rigid then 
we can obtain the upper bound on k and, thus, the lower bound on CE. Replacing N 
in (2) by L ,  - L””, and S,  by La, where the exponent a describes the divergence of 
the radius of gyration of the SCB with L, and using the definition of lE, we obtain 
lE 2 2 a  + 1/ v. Kantor and Webman (1984) assumed that SCB are homogeneously 
distributed, i.e. a = 1, and arrived at the bound l E 2 2  + 1/v. This assumption is 
confirmed here by numerical simulation. Similar arguments can be used to obtain an 
upper bound on lE. If we neglect all the bonds except those contained in the shortest 
path between two points, the length of which diverges as L‘, then we underestimate 
k and overestimate LE. Thus the bounds on T are: 

d V + l <  T < ( d  +Z)V. (3) 

Using the known values of v (see, e.g., Stauffer 1980) and the values of z obtained by 
Hermann et a1 (1984) we find that 3.7% ~ G 4 . 2  in 2 ~ ,  and 3 . 6 s  ~ G 3 . 8  in 3 ~ .  (The 
uncertainties in the numerical values of the bounds are smaller than 0.1 and are caused 
by the uncertainties in the numerical values of Y and z.) For d = 6 both bounds coincide 
and give T = 4. Numerical simulation of a 2~ system (Bergman 1984) gives T = 3.5 f 0.2, 
while a ‘table-top’ experiment (Benguigui 1984) estimates T = 3.5 k0.4. Although these 
results are reasonably consistent with the lower bound on T, they raise a certain 
suspicion on the assumption a = 1. 

Generally, SCB can be defined as follows: We chose two boundary sets of points, 
A and B, on a finite geometrical figure, such as a percolation cluster. A bond is called 
‘singly connected’ if its removal leaves no continuous path between at least one point 
of the set A and a point of the set B. Although it is numerically convenient to choose 
each set to contain only one point (e.g., Pike and Stanley 1981), a different choice, 
where the two boundary sets represent two opposite edges of a square (faces of a 
hypercube) is more directly related (Coniglio 1982) to the position-space renormalisa- 
tion group approach (see, e.g., Reynolds et a1 1980). Although the point-to-point and 
the edge-to-edge definitions of SCB give different results for the same L, the scaling 
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powers are the same in both definitions. In the present simulation I used the edge-to- 
edge definition of SCB, and the following procedure: (1) 24000 bond percolation 
configurations at pc have been created on an L x L square lattice for each value of L 
( 2 4  L s  140). (2) Each configuration was tested to determine whether it contained a 
continuous path between x = 0 and x = L edges, i.e. percolated in y direction, and 
only the percolating configurations (half of all the configurations) have been considered. 
(3) In each percolating configuration the number L, of SCB, the number L, ,  of SCB 

which point in x direction, the squared radius of gyration S2 of SCB and the squared 
radius of gyration S: of the x coordinate of SCB have been calculated. (4) Those 
quantities have been averaged over 12 000 configurations. The standard deviation of 
each of those quantities (for fixed L) is comparable to its mean value, and the averaging 
over the large amount of configurations reduces the standard deviation of the average 
to a few percent of the average. 

The upper line in figure 1 depicts the dependence of L, on L. The inverse slope 
of this line is Y = 1.35 f 0.02 in good agreement with the known value of this exponent 
(Reynolds et af 1980). The remaining two curves in figure 1 depict S and S, as functions 
of L. Both curves have asymptotic slope a = 0.97 f 0.03. This result is consistent with 
the assumption a = 1, which can be obtained from the following considerations: If 
the point-to-point definition of SCB is used then it is clear that the density of SCB near 
the boundary points must be at least as high as their density between the points, and 
therefore, at least the radius of gyration of the component along the straight line 
connecting the two boundary points must scale as L. In the case of the edge-to-edge 
definition of SCB the situation is reversed, namely the density of SCB in the middle of 
the square will be higher than their density near the edges (or at least as high). However, 
if the radius of gyration is related to the physical properties of the system it should 
scale as L also in this case. 

1 10 100 
L 

Figure 1. Double logarithmic plot showing the 
relationship between the number of s c ~  L ,  (H), their 
radius of gyration S (O),  the radius of gyration Sx of 
theirxcoordinate(0)andthesizeofthelattice L. The 
standard deviation of the average of L ,  is - 1.5% (the 
symbol is fourtimes larger than the error bars), and for 
S and S, it is 3% (the symbol is twice as large as the 
error bars). 
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Figure 2. Double logarithmic plot showing the ratio 
S2/2Sf (H), and 1/2- L , , / L ,  (0) as a function of 
lattice size L. The statistical error of S2/2S2 is -6% 
(the size of the symbol), and the errors in the second 
curve are less than 2% (the symbol is six or more times 
larger than the error bars). 
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The above arguments do not apply to the radius of gyration S, of the coordinate 
perpendicular to the direction of percolation. Note, that the isotropy arguments do not 
apply in this case: If instead of percolation in y direction we would consider percolation in 
x direction, there would be a diferent set of SCB even for the same percolation cluster. 
Although a different behaviour of S, and Sy cannot be excluded by isotropy arguments, it 
is reasonable to expect both of them to scale, at least, with the same power. The bottom 
curve in figure 1 confirms this expectation. For an isotropic case we would expect S 2 / 2 S :  
(or S;/ S:)  to approach 1 for sufficiently large L. The upper curve in figure 2 shows that the 
ratio apparently approaches the value 2.2 * 0.1 (or S$/ S’, = 3.4 f 0.2), i.e. the distribution 
of SCB is elongated in the direction of percolation. This is a universal ratio, i.e. it is 
independent of the particular choice of the lattice type. This feature somewhat reminds 
the anisotropy of the unrestricted (Koyama 1967,1968, Soltz and Stockmayer 1971, Soltz 
1971) and self-repelling (Mazur et a1 1973, Rubin and Mazur 1977) random walks. 
However, the ‘long dimension’ in our case is predetermined by the choice of the direction 
of percolation, while the anisotropy of the random walks is ‘spontaneously’ generated and 
has a random orientation. From (2) we find that S ; / S :  = k,,/ k,, where k and k,, are the 
force constants for forces applied in x and y directions, respectively, in the model which 
assumed that all multiply connected bonds are infinitely rigid. This result can be 
interpreted as the ratio between the upper bound on the component of the elastic stiff ness 
tensor CI I = K + p ( K and p are the 2~ bulk and shear moduli, respectively) and the 
upper bound on p. Although this is only a ratio of the upper bounds on those quantities, it 
surprisingly agrees with the result 3.5 f 0.2 of the numerical simulation (Bergman 1984) of 
the actual percolation problem, and is close to the value 3 predicted from the solutionof an 
elastic Sierpinski gasket and the analysis of the Clausius-Mossotti and the effective 
medium approximations (Bergman and Kantor 1984). 

Finally, we checked the ratio of the number L , ,  of SCB which point in x direction 
to the total number LI of SCB. For small L, LI, is, obviously, a small portion of LI .  
However, we expect the ratio to approach the value f for L + q  i.e. the local lattice 
dependent geometry should not reflect the direction of the percolation. Since this 
anisotropy has nothing to do with the critical properties of SCB and is only related to 
the anisotropic boundary conditions ( L l x  = 0, for L = 1) we can expect it to disappear 
in a simple form:  constant, for L + W ,  or ( ~ - L , J L ~ ) - L ; ’ -  L - ” ~ .  
This behaviour is depicted by the lower curve of figure. 2. The inverse slope is 
- 1.36 * 0.04 in good agreement with the value of v which has been obtained previously. 
Note, that the prefactor of the power law is -1, and therefore even for L=40 the 
number of x-directed bonds is still by 15% smaller than the number of y-directed 
bonds. While this anisotropy is completely irrelevant for conductivity measurements, 
it has some importance in the studies of elasticity. This result indicates that in Monte 
Carlo simulations of elasticity larger L’s will be needed than in conductivity measure- 
ments to attain the same accuracy. 

In this work, scaling behaviour of several geometrical properties of SCB has been 
investigated, and it was shown that the knowledge of these properties can be useful 
in the investigation of certain physical properties of the system. Further investigations 
of those properties (especially the ratio S$/ Sf) on larger and different kinds of lattices 
would be useful. In six dimensions, where the number of the SCB, the length of the 
shortest path between two points and the random walks have the same scaling 
behaviour, an investigation of the anisotropy of those objects could provide an insight 
into its nature. 
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